In simpler terms, encryption takes readable data and alters it so that it appears random. Encryption requires the use of a cryptographic key: a set of mathematical values that both the sender and the recipient of an encrypted message agree on.
What are the different types of encryption?
The two main kinds of encryption are symmetric encryption and asymmetric encryption. Asymmetric encryption is also known as public key encryption.
In symmetric encryption, there is only one key, and all communicating parties use the same (secret) key for both encryption and decryption. In asymmetric, or public key, encryption, there are two keys: one key is used for encryption, and a different key is used for decryption. The decryption key is kept private (hence the “private key” name), while the encryption key is shared publicly, for anyone to use (hence the “public key” name).
Why is data encryption necessary?
Privacy: Encryption ensures that no one can read communications or data at rest except the intended recipient or the rightful data owner. This prevents attackers, ad networks, Internet service providers, and in some cases governments from intercepting and reading sensitive data.
Security: Encryption helps prevent data breaches, whether the data is in transit or at rest. If a corporate device is lost or stolen and its hard drive is properly encrypted, the data on that device will still be secure. Similarly, encrypted communications enable the communicating parties to exchange sensitive data without leaking the data.
Data integrity: Encryption also helps prevent malicious behavior such as on-path attacks. When data is transmitted across the Internet, encryption (along with other integrity protections) ensures that what the recipient receives has not been tampered with on the way.
Authentication: Public key encryption, among other things, can be used to establish that a website’s owner owns the private key listed in the website’s TLS certificate. This allows users of the website to be sure that they are connected to the real website (see What is public key encryption? to learn more).
Regulations: For all these reasons, many industry and government regulations require companies that handle user data to keep that data encrypted. Examples of regulatory and compliance standards that require encryption include HIPAA, PCI-DSS, and the GDPR.
CHALLENGES
1. Security of nation-Encrypted messages can be used by terrorists and other non state elements that can threaten sovereignty and integrity of nation
2. Vulnerable communities:social media trolling,hate messages,child pornography gets difficult to restrict
3. Data authenticity and fake messages on social media
4. Difficulty in differentiating whether act was by state actor or non state actor